BOARD OF TECHNICAL EDUCATION

tified)

MAHARASHT (Autonomous)

(ISO/IEC - 2700



1

WINTER-19 EXAMINATION

Subject Name: Basic Electronics

Subject Code:

| 2        | 7 | 7 | 1 | 6 |
|----------|---|---|---|---|
| <b>Z</b> | Z | Z | Т | U |

Model Answer

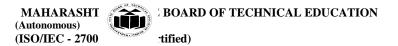
### Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q.<br>No. | Sub<br>Q. N. | Answers                                                                                                                                                                                                                                                                                                                                                                              | Marking<br>Scheme           |
|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1         | (A)          | Attempt any FIVE of the following:                                                                                                                                                                                                                                                                                                                                                   | 10- Total<br>Marks          |
|           | (a)          | Define : Intrinsic semiconductor and Extrinsic semiconductor.                                                                                                                                                                                                                                                                                                                        | 2M                          |
|           | Ans:         | Intrinsic – Semiconductor in pure form is called as intrinsic semiconductor.<br>Extrinsic – Semiconductor with added impurity is called as extrinsic semiconductor.                                                                                                                                                                                                                  | Each<br>definitio<br>n : 1M |
|           | (b)          | State any two applications of FET.                                                                                                                                                                                                                                                                                                                                                   | 2M                          |
|           | Ans:         | <ul> <li>Applications of FET :</li> <li>As input amplifiers in oscilloscopes, electronic voltmeters and other measuring and testing equipment because high input impedance reduces loading effect to the minimum.</li> <li>As Constant current source.</li> <li>They are used to build RF amplifiers in FM tuners and other communication circuits. Because of low noise.</li> </ul> | Any two<br>: 2M             |





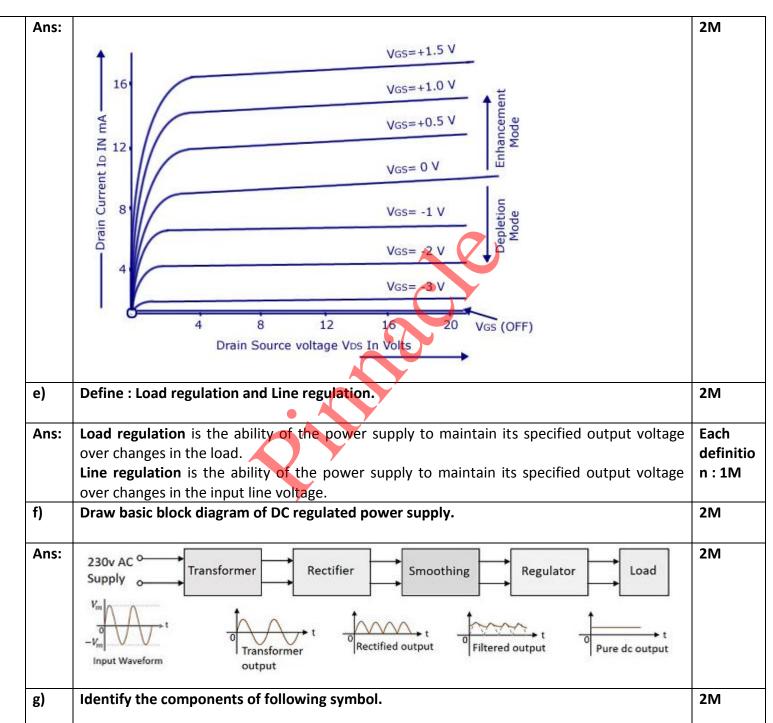

WINTER-19 EXAMINATION

Subject Code:

22216

# Model Answer

|      | <ul> <li>FETs are used in mixer circuits of FM and TV receivers as it reduces inter modulation distortion.</li> <li>Used as Analog switch.</li> <li>As a Voltage Variable Resistor (VVR) in operational amplifiers.</li> </ul> |                      |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| (c)  | Draw symbol of NPN and PNP transistor.                                                                                                                                                                                         | 2M                   |
| Ans: |                                                                                                                                                                                                                                | Each<br>symbol<br>1M |
|      |                                                                                                                                                                                                                                |                      |




WINTER-19 EXAMINATION

Subject Code:

22216

#### Model Answer









Subject Code:

22216

Subject Name: Basic Electronics

Model Answer

|           |              |                                                                                                               |                          |                 | 4                      |
|-----------|--------------|---------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|------------------------|
|           |              | Anode Cathode (ii) At<br>Anode Cathode<br>Fig. No. 1                                                          | He Cathode<br>Fig. No. 2 |                 |                        |
|           | Ans:         | Fig no. 1 : LED<br>Fig no. 2 : Zener Diode                                                                    |                          |                 | Each<br>symbol :<br>1M |
|           |              |                                                                                                               |                          |                 | I                      |
| Q.<br>No. | Sub<br>Q. N. |                                                                                                               | Answers                  |                 | Marking<br>Scheme      |
| 2         |              | Attempt any THREE of the fo                                                                                   | 12- Total<br>Marks       |                 |                        |
|           | a)           | Compare P-N junction diode<br>(i) Symbol<br>(ii) Doping level<br>(iii) Breakdown Voltag<br>(iv) Applications. |                          | ing parameters: | 4M                     |
|           | Ans:         | Parameter<br>Symbol                                                                                           | PN junction diode        | Zener diode     | Four<br>points :<br>4M |
|           |              | Doping level                                                                                                  | Low                      | High            |                        |





Subject Code:

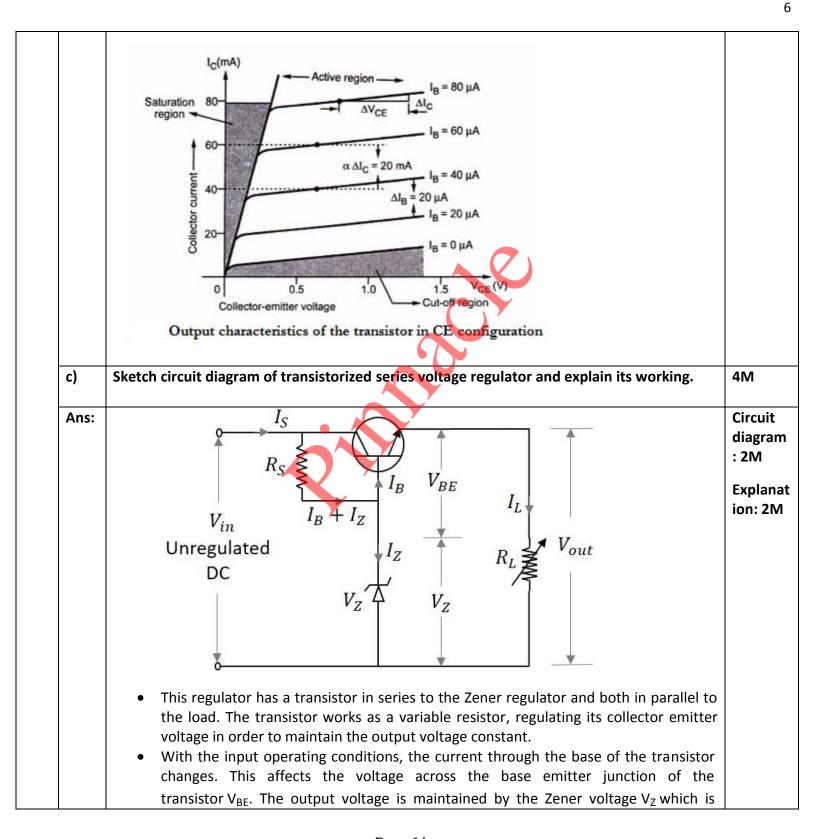
22216

# Subject Name: Basic Electronics

Model Answer

|      | Breakdown voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | It has no sharp reverse breakdown                                                                | It has quite sharp reverse breakdown                        |                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|
|      | Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Used in rectification                                                                            | Voltage stabilizer, motor<br>protection and wave<br>shaping |                                   |
| b)   | Sketch input and output c<br>characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | haracteristics of CE configuratio                                                                | n. Label various regions on                                 | 4M                                |
| Ans: | $     \begin{array}{c}       I_{B}(\mu A) \\       80 - V_{CE} = 5 \\       70 - I_{A} I_{B} \\       90 - I_{A}$ | 5V                                                                                               |                                                             | Each<br>charact<br>ristic :<br>2M |
|      | 0.<br>Base-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Delta V_{BE}$ $V_{BE}(V)$<br>5 1.0 1.5<br>emitter voltage<br>the transistor in CE configuratio | n                                                           |                                   |






Subject Code:

22216

## **Subject Name: Basic Electronics**







WINTER-19 EXAMINATION

Subject Code:

22216

# Model Answer

7

| <ul> <li>Vo = Vin - V<sub>CE</sub></li> <li>Also, V<sub>CE</sub> = V<sub>CC</sub> - Ic.Rc</li> <li>If the input voltage Vin is increased, the output voltage Vo also increases.</li> <li>But this in turn makes the voltage across the emitter base junction V<sub>BE</sub> to decrease. If V<sub>BE</sub> decreases the base current and collector current decreases which in turn increases collector to emitter voltage V<sub>CE</sub>. Thus reducing the output voltage V<sub>O</sub>.</li> <li>This decrease of output voltage compensates the initial increase in output voltage. Thus it acts as a regulator.</li> <li>Derive the relationship between α and β of a transistor.</li> </ul> |                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Derive the relationship between $\alpha$ and $\beta$ of a transistor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4M                                                                                                                                                                                                                                                                                 |
| Relation between $\alpha \& \beta$ :<br>We know that; $I_E = I_B + I_C$ (i)<br>Dividing equation (i) by $I_C$ .<br>$I_E / IC = (I_B / I_C) + (I_C / I_C)$<br>Therefore, $\frac{1}{\alpha} = \frac{1}{\beta} + 1$ (Since $\alpha = I_C / I_E$ , $\beta = I_C / I_B$<br>Therefore $\frac{1}{\alpha} = \frac{1+\beta}{\beta}$<br>Therefore $\alpha = \frac{\beta}{1+\beta}$                                                                                                                                                                                                                                                                                                                          | Relatio<br>: 4M                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | We know that; $I_E = I_B + I_C$ (i)<br>Dividing equation (i) by $J_C$ .<br>$I_E / IC = (I_B / I_C) + (I_C / I_C)$<br>Therefore, $\frac{1}{\alpha} = \frac{1}{\beta} + 1$ (Since $\alpha = I_C / I_E$ , $\beta = I_C / I_B$<br>Therefore $\frac{1}{\alpha} = \frac{1+\beta}{\beta}$ |

# OUR<sup>P</sup>CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228





Subject Code:

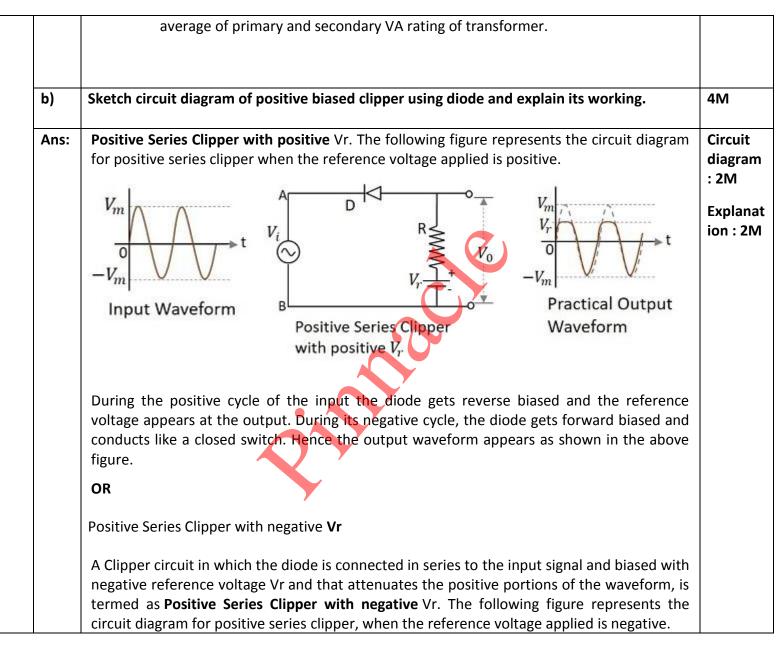
22216

Model Answer

|           |              |                                                                                                                                                                                                                         | 8                          |
|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|           |              | $\alpha(1+\beta) = \beta$                                                                                                                                                                                               |                            |
|           |              | $\alpha + \alpha\beta = \beta$                                                                                                                                                                                          |                            |
|           |              | Therefore $\alpha = \beta - \alpha\beta$ – Optional                                                                                                                                                                     |                            |
|           |              | Therefore $\alpha = \beta (1 - \alpha)$                                                                                                                                                                                 |                            |
|           |              | Therefore $\beta = \frac{\alpha}{1-\alpha}$                                                                                                                                                                             |                            |
|           |              |                                                                                                                                                                                                                         |                            |
|           |              |                                                                                                                                                                                                                         |                            |
| Q.<br>No. | Sub<br>Q. N. | Answers                                                                                                                                                                                                                 | Marking<br>Scheme          |
| 3         |              | Attempt any THREE of the following :                                                                                                                                                                                    | 12- Total<br>Marks         |
|           | a)           | Define following parameter of rectifier:                                                                                                                                                                                | 4M                         |
|           |              | (i) Ripple factor                                                                                                                                                                                                       |                            |
|           |              | (ii) Efficiency                                                                                                                                                                                                         |                            |
|           |              | (iii) Peak Inverse Voltage                                                                                                                                                                                              |                            |
|           |              | (iv) Transformer utilization factor                                                                                                                                                                                     |                            |
|           | Ans:         | <ul> <li>(i) <b>Ripple Factor</b> - Ripple factor (γ) may be defined as the ratio of the root mean square (rms) value of the ripple voltage to the absolute value of the DC component of the output voltage.</li> </ul> | Each<br>definitio<br>n: 1M |
|           |              | (ii) <b>Efficiency</b> - Rectifier efficiency is defined as the ratio of DC power to the applied input AC power.                                                                                                        |                            |
|           |              | <ul> <li>Rectifier efficiency, η = DC output power/input AC power</li> <li>(iii) Peak inverse voltage: For rectifier applications, peak inverse voltage (PIV) or peak</li> </ul>                                        |                            |
|           |              | reverse voltage (PRV) is the maximum `reverse voltage that a diode can withstand                                                                                                                                        |                            |
|           |              | without destroying the junction                                                                                                                                                                                         |                            |
|           |              | (iv) <b>Transformer Utilization Factor</b> (TUF) : Transformer Utilization Factor (TUF) is                                                                                                                              |                            |
|           |              | defined as the ratio of DC power output of a rectifier to the effective <u>Transformer</u>                                                                                                                              |                            |
| <u> </u>  |              | VA rating used in the same rectifier. Effective VA Rating of transformer is the                                                                                                                                         |                            |








Subject Code:

22216

Subject Name: Basic Electronics

**Model Answer** 






WINTER-19 EXAMINATION


Subject Code:

22216

## Model Answer









WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer







Subject Name: Basic Electronics

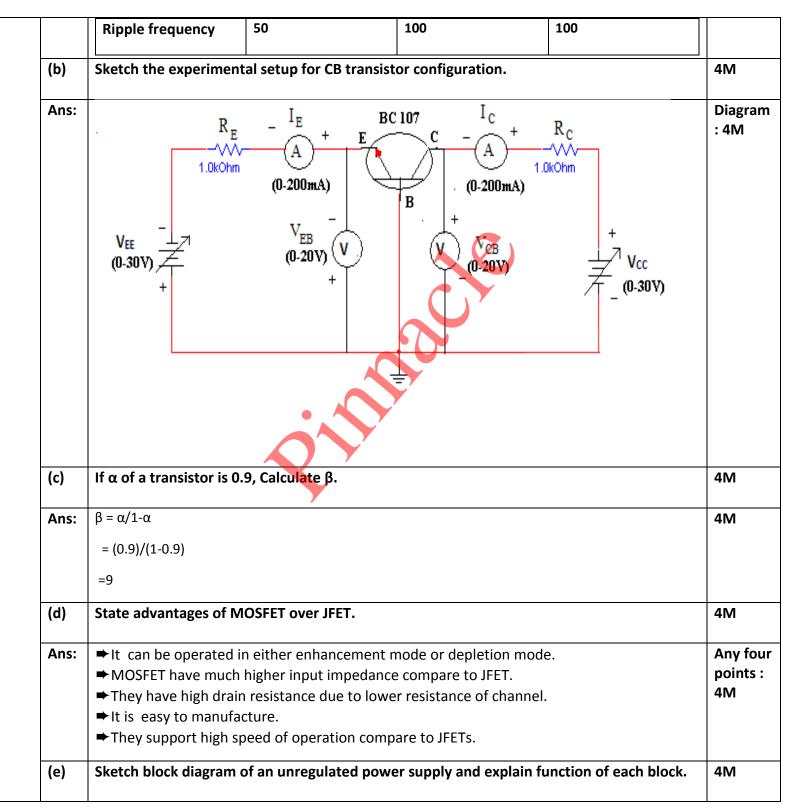
Subject Code:

22216

# Model Answer

|           |                                                                                                                                                                                                                                                 | $R_d = (\Delta V_{DS})/(\Delta I_D)$ at Co                                                                                                                                                                       | nstant V <sub>GS</sub>                     |                        |                                                              |                   |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|--------------------------------------------------------------|-------------------|--|
|           |                                                                                                                                                                                                                                                 | (iii) Transconductance (gm) – It is the ratio of change in drain current $(\Delta I_D)$ to the change<br>in gate source voltage ( $\Delta V_{GS}$ ) at constant drain-source voltage. It can be expressed<br>as, |                                            |                        |                                                              |                   |  |
|           |                                                                                                                                                                                                                                                 | $g_{fs} = (\Delta I_D)/(\Delta V_{GS})$ at co                                                                                                                                                                    | nstant $V_{DS}$                            |                        |                                                              |                   |  |
|           |                                                                                                                                                                                                                                                 | depleted of c                                                                                                                                                                                                    |                                            | and the value of drain | ich the entire channel will b<br>current reaches its constan |                   |  |
|           | d)                                                                                                                                                                                                                                              | State any four applica                                                                                                                                                                                           | tions of regulate                          | ed DC power supply.    |                                                              | 4M                |  |
|           | Ans:                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  | oower adaptors<br>er supplies in ap<br>ors | opliances              |                                                              | 1 mark<br>each    |  |
|           |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                            |                        |                                                              |                   |  |
| Q.<br>No. | Sub<br>Q. N.                                                                                                                                                                                                                                    | Answers                                                                                                                                                                                                          |                                            |                        |                                                              | Marking<br>Scheme |  |
| 4         |                                                                                                                                                                                                                                                 | Attempt any THREE of the following :                                                                                                                                                                             |                                            |                        |                                                              |                   |  |
|           | (a)       Compare half wave rectifier and full wave bridge rectifier with following parameters.         (i)       No. of diodes used         (ii)       Efficiency         (iii)       Peak inverse voltage         (iv)       Ripple frequency |                                                                                                                                                                                                                  | 4M                                         |                        |                                                              |                   |  |
|           | Ans:                                                                                                                                                                                                                                            | PARAMETERS                                                                                                                                                                                                       | HWR                                        | FWCR                   | FWBR                                                         | Four<br>points :  |  |
|           |                                                                                                                                                                                                                                                 | No. of diodes used                                                                                                                                                                                               | 1                                          | 2                      | 4                                                            | 4M                |  |
|           |                                                                                                                                                                                                                                                 | Efficiency                                                                                                                                                                                                       | 40.6%                                      | 81.2%                  | 81.2%                                                        | $\neg$            |  |
|           |                                                                                                                                                                                                                                                 | Peak inverse<br>voltage                                                                                                                                                                                          | Vm                                         | 2Vm                    | Vm                                                           |                   |  |






WINTER-19 EXAMINATION

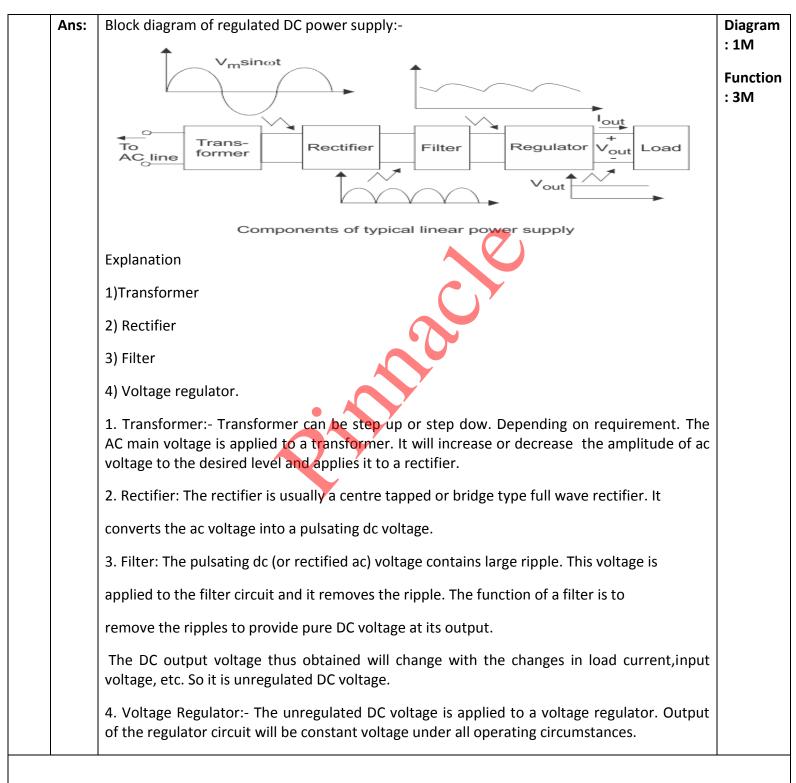
Subject Code:

22216

## Model Answer








WINTER-19 EXAMINATION

Subject Code:

22216

## Model Answer

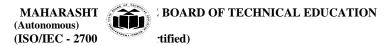






WINTER-19 EXAMINATION

Subject Code:


22216

#### Model Answer

15

Q. Sub Answers Marking Q. N. Scheme No. 5. Attempt any TWO of the following: 12- Total Marks a) Sketch construction of N-channel JFET and explain its operating principle. 6M **Construction of N-channel JFET:** 3M Ans: Construc Drain DP tion N-type 3M for P-type channel operatio n Gate principle G with diagram Source Working of N channel FET: D V<sub>DD</sub> Vpp Vag EV GG S S a)when  $V_{GS}$  is zero,  $I_D$  flows because of  $V_{DS}$ b)Now when V<sub>GS</sub> increases towards negative, depletion layer also increases on both sides.

# OUR<sup>PCENTERS</sup> : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228





#### WINTER-19 EXAMINATION

Subject Code:

22216

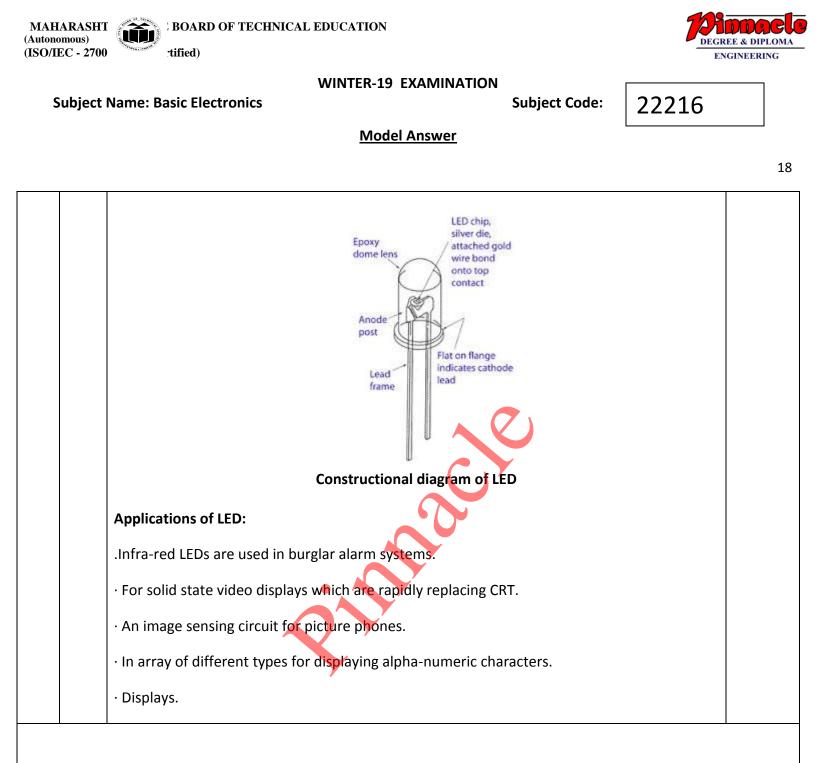
#### **Model Answer**



c)so  $V_{GS}$  control drain current  $I_D$ d)so it is called as field effect Transistor Draw circuit diagram for  $\pi$  filter and explain its working with waveforms. b) 6M Ans: Vm 2M Circuit Filtered output Rectified output π filter (Pi-filter) Diagram 2M Working of a Pi filter: Explanat ion In this circuit, we have a capacitor in parallel, then an inductor in series, followed by another capacitor in parallel. 2M **Capacitor**  $C_1$  – This filter capacitor offers high reactance to dc and low reactance to ac signal. Wavefor After grounding the ac components present in the signal, the signal passes to the inductor m for further filtration. **Inductor L** – This inductor offers low reactance to dc components and offers high reactance to the ac components which remains to pass through the capacitor C<sub>1</sub>. **Capacitor C**<sub>2</sub> – Now the signal is further smoothened using this capacitor C2. It allows any ac component present in the signal to pass through it, which the inductor has failed to block. OR CLC Filter Full wave rectified input C<sub>1</sub> will bypass ac & blocks dc.






WINTER-19 EXAMINATION

Subject Code:

22216

# Model Answer

|      | This output is given to inductor, it will block ac and pass only dc.<br>This output is given to $C_2$ it will again bypass remaining ac and block dc , so at output we get<br>ripple free dc. |                                                               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| c)   | Sketch constructional diagram of LED and state its three applications.                                                                                                                        | 6M                                                            |
| Ans: | Emitted light<br>P-type<br>Active region<br>N-type<br>Free electron<br>Hple<br>Photon<br>OR                                                                                                   | 3M for<br>constructional<br>diagram<br>3M for<br>applications |



| Q.<br>No. | Sub<br>Q. N. | Answers                                                                                                                                               | Marking<br>Scheme            |
|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 6.        |              | Attempt any TWO of the following :                                                                                                                    | 12- Total<br>Marks           |
|           | a)           | Describe classification of solids on the basis of energy band diagram.                                                                                | 6M                           |
|           | Ans:         | <b>Classification on the basis of energy theory:</b><br>Based on the ability of various materials to conduct current, the materials are classified as | 2M for<br>classific<br>ation |

# OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228





WINTER-19 EXAMINATION

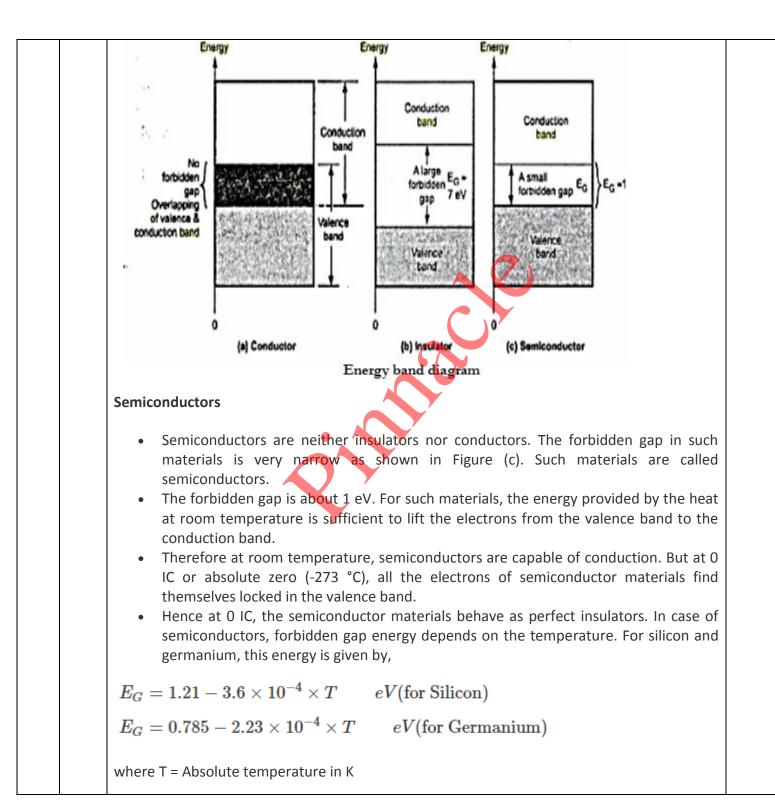
Subject Code:

```
22216
```

# Model Answer

| conductors, insula                                                                                                                                                                                                                                                                                                                                             | tors and the semiconductors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2M for                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Conductors                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | diagrar                  |
| <ul> <li>A materia<br/>example, o<br/>number. H</li> <li>Intact, in<br/>valence ba</li> <li>The two l<br/>electrons a</li> <li>So withou<br/>electrons<br/>conductor</li> </ul> Insulators In case of a<br>conduction <ul> <li>Practically<br/>conduction</li> <li>Hence such</li> <li>The forbid<br/>For a diam</li> <li>Such mate<br/>to high vol</li> </ul> | I having large number of free electrons can conduct very easily. For<br>copper has 8.5x1028 free electrons per cubic meter which is a very large<br>ence copper is called good conductor.<br>the metals like copper, aluminum there is no forbidden gap between<br>nd and conduction band.<br>oands overlap. Hence even at room temperature, a large number of<br>ore available for conduction.<br>t any additional energy, such metals contain a large number of free<br>and hence called good conductors. An energy band diagram for a<br>is shown in the Figure (a). | 2M for<br>explana<br>ion |






Subject Code:

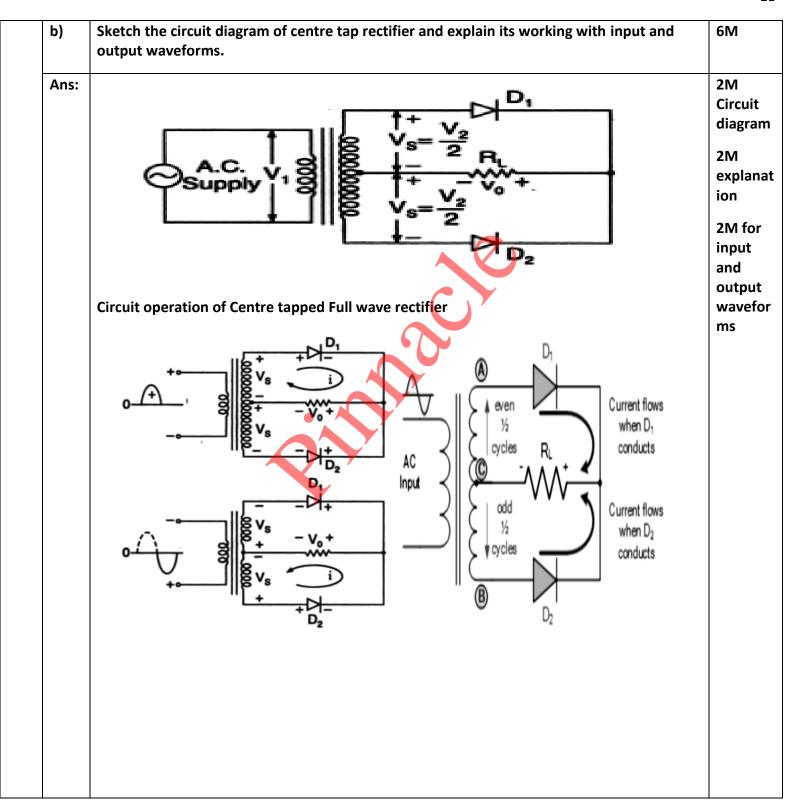
**Subject Name: Basic Electronics** 











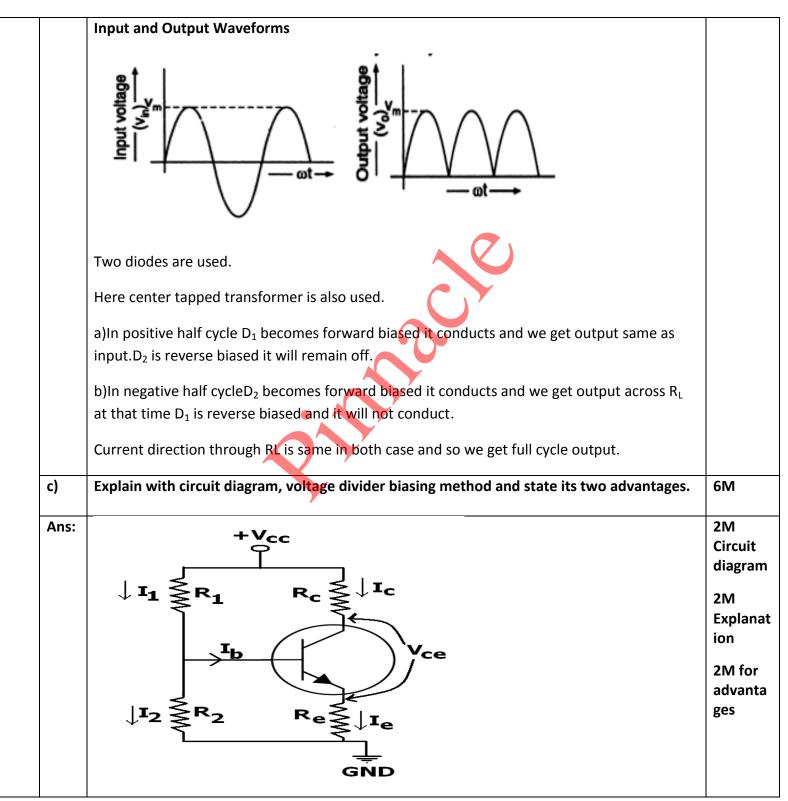

WINTER-19 EXAMINATION

Subject Code:

22216

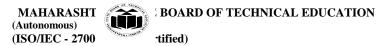
# Model Answer








Subject Code:


22216

## Model Answer



OUR<sup>PCENTERS</sup> : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228







WINTER-19 EXAMINATION

**Subject Code:** 

Г

### Model Answer

| a)Here $R_1$ and $R_2$ forms voltage divider biasing arrangement.                             |  |
|-----------------------------------------------------------------------------------------------|--|
| b)voltage drop across $R_2$ , forward biases the base emitter junction.                       |  |
| c)so base current flows and hence collector current flows in zero signal condition.           |  |
| d)R <sub>E</sub> provides stabilization and R <sub>C</sub> controls collector current.        |  |
| It is most widely used method.                                                                |  |
| Advantages of voltage divider bias                                                            |  |
| The circuit operation is independent of the transistor current gain $\beta$ .                 |  |
| $\cdot$ The resistors help to give complete control over the voltage and current.             |  |
| $\cdot$ The emitter resistor, Re, allows for stability of the gain of the transistor, despite |  |
| fluctuations in the $\beta$ values.                                                           |  |
| · Operating point stabilized against shift in temperature.                                    |  |
| $\cdot$ Operating point is almost independent of $\boldsymbol{\beta}$ variation               |  |